Triple groups and Cherednik algebras
نویسندگان
چکیده
The goal of this paper is to define a new class of objects which we call triple groups and to relate them with Cherednik's double affine Heeke algebras. This has as immediate consequences new descriptions of double affine Weyl and Artin groups, the double affine Heeke algebras as well as the corresponding elliptic objects. From the new descriptions we recover results of Cherednik on automorphisms of double affine Heeke algebras.
منابع مشابه
Triple Groups And
The goal of this paper is to define a new class of objects which we call triple groups and to relate them with Cherednik’s double affine Hecke algebras. This has as immediate consequences new descriptions of double affine Weyl and Artin groups, the double affine Hecke algebras as well as the corresponding elliptic objects. From the new descriptions we recover results of Cherednik on automorphis...
متن کاملar X iv : m at h / 03 04 18 6 v 1 [ m at h . Q A ] 1 5 A pr 2 00 3 TRIPLE AFFINE ARTIN GROUPS
The goal of this paper is to define a new class of objects which we call triple affine Artin groups and to relate them with Cherednik’s double affine Hecke algebras. This has as immediate consequences new and simple descriptions of double affine Weyl and Artin groups, the double affine Hecke algebras as well as the corresponding elliptic objects. We also recover in an transparent and elementary...
متن کاملLowest-weight representations of Cherednik algebras in positive characteristic
Lowest-weight representations of Cherednik algebras H~,c have been studied in both characteristic 0 and positive characteristic. However, the case of positive characteristic has been studied less, because of a lack of general tools. In positive characteristic the lowest-weight representation Lc(τ) of the Cherednik algebra is finite-dimensional. The representation theory of complex reflection gr...
متن کاملQuasiharmonic Polynomials for Coxeter Groups and Representations of Cherednik Algebras
We introduce and study deformations of finite-dimensional modules over rational Cherednik algebras. Our main tool is a generalization of usual harmonic polynomials for each Coxeter groups — the so-called quasiharmonic polynomials. A surprising application of this approach is the construction of canonical elementary symmetric polynomials and their deformations for all Coxeter groups.
متن کاملApplications of Procesi Bundles to Cherednik Algebras
In this talk we describe some applications of Procesi bundles that appeared in Gufang’s talk to type A Rational Cherednik algebras introduced in Jose’s talk. We start by recalling Procesi bundles, quantum Hamiltonian reductions, and Cherednik algebras. Then we apply Procesi bundles to relating the spherical Rational Cherednik algebras to quantum Hamiltonian reductions. Finally, we study the def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012